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Introduction

The Tower of Hanoi is familiar to most
mathematicians. The first solution to the Tower of
Hanoi published in the mathematical literature
appeared in 1884 in an article by Allardice and
Fraser.

If we formulate the problem as one of
determining the number of moves required to
transfer a tower of n disks to three pegs, it is not
difficult to solve. Indeed, this problem frequently
appears as an elementary exercise in discrete
mathematics textbooks. In its standard form, the
puzzle consists of three numbered pegs and n disks.
Initially, the disks, which have radius 1, 2, 3, ..., n
are all placed on peg 1 in decreasing order of size
such that the smallest disk is on top and the largest
disk is at the bottom. A move of the puzzle
consists of taking the top disk off one peg and
moving it to another. A move is called legal if it
does not involve covering a smaller disk with a
large one. The object of the puzzle is to transfer all
of the disks from peg 1 to one of the other two
pegs, using only legal moves. We are interested in
the optimal solution to the puzzle, that is the
minimum number of legal moves required to move
the disks from one peg to another. If we let 4,
denote the number of moves required to transfer a
tower of n disks from one peg to another, it is easy
to see that we first move the top n-1 disks from the
initial peg to an intermediate peg, then the largest
disk to the target peg, and finally the n-1 disks
from the intermediate peg to the target peg. This
gives us the recurrence relation:

h,=2h,  +1, h =1
By solving the recurrence relation we find the
well-known solution:

h,=2"-1
This A, is the optimal solution to the puzzle

(Wood, 1981).

Perhaps the greatest challenge is posed by
increasing the number of pegs. The modification is
to change the number of pegs from 3 to t, where t > 2.
The purpose and the rules of this modified version
arc the same as the standard one. The reason why

Pythagoras 57, April, 2003, pp. 27-31

this puzzle is interesting at all is that the optimal
solution to the puzzle is not unique, and it is not
obvious how to derive a solution. A method for
achieving optimal splitting of a tower of n disks
appears to be more complicated than one would
initially imagine. To gain a more intuitive
understanding of the principles involved, we will
discuss a step-by-step derivation that eventually
leads to the optimal method.

Before this discussion, let us tabulate the
minimum number of disk moves for each
combination of t pegs and n disks. This gives us
Table 1.

n | t=2 =3 t=4 | t=5 [ t=6 [ t=7 | t=8
0|0 0 0 0 01010

1 1 1 1 1 I 1 1

2 3 3 3 3133

3 7 5 5 51515

4 15 9 7 717 |7

5 31 13171119 ((9]9

6 63 17 15|13 |11 |11
7 127 25119 | 17|15 | 13
8 255 33123 (211917
9 511 41 | 27 [ 25| 23 | 21
10 1023 49 | 31 | 29 | 27 | 25
11 2047 65 [ 39 [ 33 | 31 | 29
12 4095 81 | 47 | 37 (35|33
13 8191 97 | 55 | 41| 39 | 37
14 16383 | 113 | 63 | 45 | 43 | 41
15 32767 | 129 | 71 | 49 | 47 | 45
16 65535 [161 | 79 | 57 | 51 | 49
17 131071 {193 | 87 | 65 | 55 | 53
18 262143 | 225 95 | 73 | 59 | 57
19 524287 | 257|103 | 81 | 63 | 61
20 1048575 | 289 | 111 | 89 | 67 | 65

Table 1
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The graph for the Tower of Hanoi with four pegs

Let M(t, n) be the minimum number of disk
moves in transferring a tower of n disks from one
peg to another using all t pegs. From Table 1, we
obtain

wton)= 5251 (1257)

where x satisfies

(t—3+x) (t—2+x)
<n<

-2 =2
This was deduced by M. C. Er (1988).

In this paper, we will take another approach to
the Tower of Hanoi problem. Using only
elementary ideas from graph theory, we will
establish a correspondence between configurations
of disks arising in the Tower of Hanoi problem and
a fractal. We will then use this correspondence to
solve a Tower of Hanoi with 4 pegs. A very
interesting development in this direction can be
found in Stewart (1992). The starting point of this
paper is the observation of Stewart's method,
which we elaborate on in Section 2.

The Tower of Hanoi graph

Consider the Tower of Hanoi with just three disks.
To construct the graph, we must first find a way to
represent all possible positions, then work out the
legal moves between them, and finally draw up the
graph. We number the three disks 1, 2, 3 with 1
being the smallest and 3 the largest. We number
the pegs 1, 2, 3 from left to right (see Figure 1).

@ @ ©)

()
e ]

Figure 1

For example, if disk 1 is on peg 2, disk 2 is on
peg 1, and disk 3 is on peg 2, then we have
completely determined a potential position. We
can encode this information in the sequence 212,
the three digits in turn representing the pegs for
disks 1, 2 and 3. Therefore each position in a 3-
disk Tower corresponds to a sequence of three
digits, each being 1, 2 or 3.

It follows that there are precisely 3° =27 different
positions in a 3-disk Tower of Hanoi. Indeed, by
using the graph it is clear that we can get from any
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position to any other, and it is also clear what the
quickest route is.

Figure 2: Graph for three-disk, three-peg tower

The graph (see Figure 2) consists of three
copies of a smaller graph linked by three single
edges to form a triangle. Each smaller graph in turn
has a similar triple structure. Similarly, the graph
for a 4-disk Tower of Hanoi consists of three
copies of a 3-disk graph linked at the corners like a
triangle. Using the same argument, we can say that
the Tower of Hanoi has a recursive structure; the
solution to an (n+1)-disk Hanoi is determined by
that for an n-disk Hanoi according to a fixed rule.
As the number of disks becomes larger, the graph
becomes more and more intricate, looking more
and more like the Sierpinski gasket. This shape is
fractal-like.

n-disk
3-peg tower

n-disk
3-peg tower

n-disk
3-peg tower

Figure 3: The graph for an (n+1)-disk three-peg
tower

Looking at Figure 3, we can see that the number of
vertices along a side of the graph doubles at each
stage, and is 2" for an n-disk Hanoi. The number
of edges along a side (which is what we want) is



Lee

one less than this, namely 2" —1. Suppose there
are e, edges in the n-disk graph. The recursive

=3e,+3, e =3.
Thus we get the following proposition:

structure implies e, ,

PROPOSITION: For an n-disk (3-peg) Tower of
Hanoi, the minimum number of moves needed to

move all n disks from one peg to another is 2" —1
and the total number of distinct moves from one

position to another position is 3" =3,

The graph for a Tower of Hanoi with four
pegs

Consider first a 1-disk 4-peg Tower. There are
clearly only three different possible moves. The
graph of this situation can be represented by a
tetrahedron in 3-dimensional space (see Figure 4).

0‘:30

Figure 4: The graph for the one-disk, four peg
problem

We continue with 2 disks and a four-peg tower.
With 2 disks and 4 pegs, there are precisely
4x4=16 different positions. We can list all these 16
positions and all possible moves by following the
legal moves. The result is shown in Figure 5.

Figure 5: Graph for two-disk, four-peg problem

The next task requires care and accuracy, but
little thought. After many attempts, we can
rearrange the vertices and edges to avoid overlaps.
Drawing the graph in 3-dimensional space leads to
Figure 6. The graph resembles a tetrahedron.

Figure 6b: The two shortest paths to move the two
disks from peg 1 to peg 2

To transfer both disks from peg 1 (position 11) to
peg 2 (position 22) we merely run down the edge,
making the moves:

11 =41 —42 —22,
or 11 —31 — 32 — 22 (see Figure 6b).
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The graph for the Tower of Hanoi with four pegs

Figure 6¢: Each position of the graph shown on a
tetrahedron

As indicated previously, by consulting the
graph it is clear that we can get from any position
to any other, as well as what the quickest route is.
The graph consists of four copies of a smaller
graph, linked by 12 edges to form a tetrahedron. In
this graph, we also find that the following graphs
are all rectangles:

21-41-43-23-21,
41-31-32-42-41,
21-31-34-24-21,
12-13-43-42-12,
12-14-34-32-12,
14-13-23-24-14.

The same argument works for any number of
disks. The graph for a 3-disk Hanoi with four pegs,
for example, consists of four copies of the 2-disk
graph, linked at the corners like a tetrahedron (see
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Figure 7). So we can say that Tower of Hanoi with
four pegs has a recursive structure and the graph
again resembles a fractal.

Figure 7 shows the graph for a 3-disk Tower of
Hanoi, drawn by applying this recursive structure.
Without this graph, it would take days to work out
a 3-disk Tower of Hanoi by listing all

4’ = 64 possible positions and finding all the
moves between them (and one would probably
make several mistakes along the way).

In Figure 8 we see that the number of vertices
along a side of the graph doubles at each stage and
is thus 2" for an n-disk Hanoi with four pegs. This
means that the graph for an n-disk Hanoi with four
pegs consists of four copies of the (n-1)-disk

graph, linked by 6.2""edges to form a

tetrahedron. So this graph is a fractal.
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Figure 7: Graph of the 3-disk, 4-peg Tower of Hanoi (with only some of the routes shown)

M1

Figure 8: Graph of a 4-disk, 4-peg Tower of Hanoi (highlighting the fractal-like structure)
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Branched Polymers

Richard Kenyon and Peter Winkler

1. INTRODUCTION. A branched polymer of order n in R®—or just *“polymer”
for short—is a connected set of n labeled unit spheres with nonoverlapping interiors.
We will assume that the sphere labeled 1 is centered at the origin. See Figure | for an
example in the plane.

Figure 1. A branched polymer in the plane.

Intended as models in chemistry or biology, branched polymers are often modeled,
in turn, by lattice animals (trees on a grid); see, e.g.. [3, 5, 8, 10, 18, 19]. However,
continuum polymers turn out to be in some respects more tractable than their grid
cousins.

In order to study the hehavior of branched polymers, and in particular to define and
understand what random examples look like, we must define a parametrization and
then attempt to compule, using that parametrization, volumes of various configuration
spaces. In principle, we could then compute (say) the probability that a branched poly-
mer of a particular size in a given dimension takes the form of a specific tree, or has
diameter exceeding some number; and we could perhaps generate uniformly random
examples in an efficient manner.

Fortunately, the space of branched polymers of order n and dimension D possesses
an obvious and natural parametrization. One of several equivalent ways to describe it is
to specity the tree-type of the polymer, together with the n — 1 D-dimensional angles
at which each ball is attached to the next ball on the way to the root. This causes an
ambiguity if the polymer contains a cycle of touching balls (thus has multiple spanning
trees), but such polymers will have probability zero, so we don’t mind if they are
parametrized in more than one way.

For example, in the plane, the set of polymers with two balls (disks) is parametrized
by a single angle at the origin (center of ball 1), measured counterclockwise from the
x-axis to the center of ball 2. The volume of the configuration space is thus 2.
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For polymers of order 3, two angles are required: the first is the angle made by the
lowest-numbered ball touching ball 1, and the second is the angle made by the center
of the third ball to the center of the ball it touches. If ball 1 touches both other balls,
then there are 27’s worth of possibilities for the location of ball 2. Once ball 2 has
been placed, the angle of ball 3 is restricted to an interval of length 47 /3 so as not to
overlap ball 2.

One can measurc the volume of the configuration spacc in terms of these angles,
giving (27r)(4sr/3) tor this configuration (which is one of three symmeltric configura-
tions, the others having ball 2 or ball 3 in the middle). The total volume for polymers
of order 3 is then 872,

For higher-order polymers, different tree-types will have differing volumes, as well
as differing numbers of symmetries. Figure 2 shows the various ditferent topological
types of configurations with 3, 4, and 5 balls, along with their respective volumes (in
the plane). Remarkably, in dimensions 2 and 3 the sum of the volumes over all the n-
ball configurations is an intcger multiple of (2r)" ', Indeed, Brydges and Imbrie [2]
showed that the space B? (n) of polymers of order n has total volume (n — 1)! Q2ry!
for D =2 and n"~'(27)""! for D = 3. Their proof uses nonconstructive techniques
such as equivariant cohomology and localization.

G e

2(27)? 1(27v)? s(27¢)?
2 (20t ey B 2t

Figure 2. Branched polymers in the plane with 3. 4, and 5 balls, and the volumes of the corresponding con-
tfiguration spaces.

We give here an elementary proof, together with some generalizations and an al-
gorithm for exact random sampling of polymers. In the planar case our algorithm has
the added feature of being inductive, in the sense that a uniformly random polymer of
order # is constructed from one of order n — 1.

Although it is not explicit in the paper, the proof in [2] in fact shows that in the
planar case the volume of the configuration space is unchanged when the radii of the
individual disks are different. We will prove this fact, which we call the “Invariance
Lemma,” and use it in our constructions. Along the way, we provide an easy proof
for the notorious “random flight” theorem of Rayleigh and Spitzer. Moving to three
dimensions, our development leads to both a random construction and a theorem about
the expected diameter.

Our plan is as follows. In Section 2 we state the Invariance Lemma and use it to
compute the configuration volume in two dimensions. In Section 3 we generalize to
graphs, and apply the result to random flights. Section 4, devoted to 3-dimensional
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polymers, uses the earlier results to compute volumes and diameter. Section 5 contains
the proof of the Invariance Lemma. Sections 6 and 7 show how to generate uniformly
random branched polymers in dimensions two and three. Finally, Section 8 gives some
open problems.

2. THE PLANAR CASE. Let us observe first that (n — 1)! (2)"* ! is also the vol-
ume of the space of “crossing worms”—that is, strings of labeled touching disks, be-
ginning with disk 1 centered at the origin, but now with no overlap constraint. See
Figure 3 for an example. Fixing the order of disks 2 through # in the crossing worm
vields an ordinary unit-step walk in the plane of n — [ steps, whose configuration vol-
ume is just (27r)"!; the (n — 1)! ways to order disks 2 through n provide the additional
factor.

Figure 3. A crossing worm.

Another space of volume (n — 1)! (2)"~! is the space of “crossing inductive trees,”
one of which is illustrated in Figure 4. A crossing inductive tree is a tree of n touching
labeled disks with overlapping permitted, but required to satisfy the condition that for
each k < n, disks 1, ...,k must also form a tree. In other words, the vertex labels
increase from the root 1. The configuration volume is verified casily by induction;
a crossing inductive tree with n 4 1 disks is obtained by adding a single disk to an

Figure 4. A crossing inductive tree.
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already-constructed crossing inductive tree on n disks. To do this one of the » already-
placed disks is chosen to add the new disk to, as well as a random point on its boundary,
altogether multiplying the old configuration volume by n(2m). We will see that this
space 1s in fact a certain limiting case of the space of polymers.

Invariance. In this subsection we will state the critical Invariance Lemma; its proof
(via multivariate calculus) will be postponed until later.

Let us consider 2-dimensional polymers made of disks of arbitrary radius. In par-
ticular let r; € (0, o¢) be the radius of the ith disk, and R = (ry, ... , r,) the vector of
radii. Given a polymer X = X (R), define a graph H (X) with a vertex for each disk’s
center and an edge between vertices whenever the corresponding disks are adjacent.
As before H(X) is almost surely a tree, that is, has no cycles. When H (X) is a tree,
we root H (X) at the origin, and direct each edge away from the origin. This allows us
to assign an “absolute” angle (taken counterclockwise relative to the x-axis) to each
edge, and to parametrize our R-polymer with these angles as we did for the unit-disk
polymers above.

The choice of R may have a huge effect on the configuration volume for a given
tree; for example, a tree having a vertex of degree greater than six cannot occur at
all in the unit-disk case, but may have substantial volume when the radii vary widely.
However, we have the following fact:

Lemma 1 (Invariance Lemma). The total volume of the space of branched polymers
of fixed order in the plane does not depend on the radii of the disks.

What happens, as the proof (in Section 5) will show, is that as the radii change,
volume (lows from one tree to another through the boundary polymers (which have
cycles), but is always preserved.

Let us use the Invariance Lemma to show that the constant volume in fact takes the
claimed value.

Theorem 2. For any radius vector R of length n, the volume of the space of branched
polymers is (n — 1)! (2)" .

Proof. For the sake of readability we give an informal argument here, but one which
can be made rigorous in a straightforward manner. Choose ¢ > 0 very small and let R
be given by r; = &'. Let X be a uniformly random configuration of disks with these
radii, forming some labeled tree T'. Suppose that for some j < n, disks 1 through j
are connected. Then we claim that with probability near 1, disk j + 1 touches one
of disks 1 through j. To see this, observe that otherwise disk j + 1 is connected to
some previous disk 7, 1 < i < j, via a chain of (relatively) tiny disks whose indices
all exceed j + I. Let disk k, kK > j + 1, be the one that touches disk j + 1; then the
angle of the vector from the center of disk £ to the center of disk j + 1 is constrained
to a small range, else disk j + 1 would overlap disk :. It follows that the configuration
space for polymers of shape 7" and radii R has lost almost an entire degree of freedom.
Thus, it has very small volume; in other words, the tree T is very unlikely.

Suppose, on the other hand, that for every j, disks 1 through j are connected. Then
we may think of X as having been built by adding touching disks in index order, and
since each is tiny compared to all previous disks, there is almost a full range 2w of
angles available to it without danger of overlap.

It follows that as ¢ — 0 the volume of the space of polymers with radius vector
R approaches the volume of the space of crossing inductive trees, namely
(n — 1)! (2)"~". Since this volume does not depend on R, we have equality. [ |
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3. GENERALIZATION TO GRAPHS. We discuss now a more far-reaching gen-
eralization of planar branched polymers, which continues to exhibit the gratifying be-
havior above, and will be needed when we move to dimension three.

Let G be a graph on vertices {1, ... , n} in which each edge {i, j} is equipped with a
positive real length r;;. We call a subgraph H of G a connector if it contains a spanning
tree, in other words, if it is connected and contains all the vertices of G.

A G-polymer is a contiguration of points in the planc, also labeled by {1, ..., n},
such that:

I. point number 1 is at the origin;

2. for each edge {i, j} of G, the distance p(i, j) between points / and j is at least
75 and

3. the edges {i, j} for which p(i, j) = r;; constitute a connector of G.

For a given spanning tree T, we let BP;(T) denote the set of G-polymers such that
for every edge {/, j)of T', p(i, j) = rij.

Note that if G itself is not connected, then there are no G-polymers. If R =
(ri,...,r,), and G is the complete graph K, with r;; = r; + r;, then a G-polymer
is precisely the set of centers of the disks of a polymer with radius vector R, in the
sense of the previous sections. The volume Vg of the space of G-polymers is defined
as before by the angles made by the vectors from i to j, where {i, j} is an edge for
which p (i, j) = ry;.

In fact, the proof of Lemma 9 extends without modification to show that Vi does
not depend on the lengths r;; (even if they fail to satisfy the triangle inequality), but
only on the structure of . This leaves us with the question of computing Vi for a
given graph G.

To do this, we label the edges of G arbitrarily as e, ... .e,, and if ¢, = {i, j} we
let its edge length r;; be 27K Then, for the volume of BP;(T) to be nonzero, there
must not be an edge e, of G \ T such that & is the lowest index of all edges in the cycle
made by adjoining ¢, to T (the triangle inequality would cause e, to violate condition
(2) above). If no such edge exists we say that 7" is “safe”; in that case condition (2) can
never be violated. Thus, when T is safe, the volume of the space of configurations in
BP;(T) is the full (2z)"~'.

It follows that the volume of the space of all G-polymers is u(G)(2m)"~', where
w(G) is the number of safe spanning trees of G. Since the volume does not depend
on the edge labeling, neither does u(G). One might suspect therefore that (G) has a
symmetric definition, and indeed it does.

Lemma 3. For any graph G (and any numbering of its edges), the number u(G) of
safe spanning trees of G is equal to the absolute difference between the number of
connectors of G with an odd number of edges, and the number of connectors of G
with an even number of edges.

Proof. The sum of (—1)¥l over connectors H of G is in fact 75(1,0), where 7
is the Tutte polynomial of G (see, e.g., [1, 4, 17]); we need to show therefore that
r(G) =115(1, 0)].

A simple inclusion-exclusion argument suffices. Let us fix a numbering of the edges
of G and, for each spanning tree 7', let B(T") be the set of “bad” edges of G \ T, that is,
edges which boast the lowest index of any edge in the cycle formed with 7. Associate
to each connector H the spanning tree 7 (H) obtained from H by successively re-
moving the lowest-indexed (i.e., longest) edge whose removal does not disconnect H.
(T (H) can also be defined as the spanning tree of H of least total length.)
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We claim that for any spanning tree T, the connectors H for which T(H) = T are
exactly those of the form T'U S for § € B(T). Indeed, if H is of that form, then the
longest edge in S will be in a cycle (thus removable); any longer edge of H cannot be
removable because for it to be in a cycle, an even longer edge from B(7T) would have
to have been added. On the other hand, if H contains T and some edge ¢ not in B(T),
the longest edge in the unique cycle in 7 U {e} is some edge f € T; that edge would
be removed before e in the construction of T (H).

Let n be the number of vertices of G; a spanning tree has n — 1 edges. Suppose first
that » is odd. Then

D=3 3 (=,
1

T SCB(T)

but Y g pry (— DS = 0 unless B(T) is empty. Thus, the right-hand side of the equa-
tion is just the number of safe spanning trees, 1 (G). For n even, we have

PCUED DD DN C by
H

T SCB(T)
and both sides are now equal to —u(G). |

Comparing with Theorem 2, we have indirectly shown that 7, (1,0) =
(—1)""'(n — 1)!. We note also that 75(1, 0) plays the role of Brydges and Imbrie’s
function J. in the dimension-2 case.

We summarize:

Theorem 4. The volume of the space of G-polymers in the plane is |75(1, 0)[(2)" .

The precise computation of 7 (1, 0) is unfortunately #P-hard (thus, not possible in
polynomial time assuming P 3% NP) for general G [7]. The point (1, 0) is not, however,
in the region of the plane in which Goldberg and Jerrum [6] have recently shown the
Tutte polynomial to be hard even to approximate. Thus, there is some hope that a “fully
polynomial randomized approximation scheme” can be found for ©(G). Luckily, in
this work, the graphs for which we will later need to calculate 75 (1, 0) are very special.

We conclude this section with a new solution of a notoriously difficult puzzle that
appears as an exercise in Spitzer’s book Principles of Random Walk [14, p. 104], and
was derived from Rayleigh’s investigation (see [20, p. 419]) of “random flight.” The
exercise calls for proving the corollary below by developing the Fourier analysis of
spherically symmetric functions, then deriving a certain identity involving Bessel func-
tions. Curiously, it is (we believe) the only mention of random walk in confinuous
space in the entire book.

Corollary 5. Let W be an n-step random walk in R?, each step being an independent
uniformly random unit vector. Then the probability that W ends within distance 1 of
its starting point is 1 /(n 4 1).

Proof. The volume of the space of such walks, beginning from the origin, is of course
(2m)"; these walks are just the “crossing worms” defined carlicr, but with n + 1 disks.
It the walk does not terminate inside the unit disk at the origin, it is in effect a C,, -
polymer, where C, | is the (n 4 1)-cycle in which vertex i is adjacent to vertex i + 1,
modulo n + 1. In fact the walk is a C,,-polymer in which balls 1 and n + 1 are
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not adjacent. Since u(C, ) = |l — (n + 1)| = n, the volume of the space of C,,-
polymers is n(2r)". Since the spanning tree with no edge between nodes 1 and n + 1
is one of n + 1 symmetric choices, the volume of the C,|-polymers which correspond
to non-returning random walks is n(27)" /(n + 1), and the result follows. [ ]

4. THE 3-DIMENSIONAL CASE

Volume invariance. Branched polymers in 3-space share many of the features of pla-
nar branched polymers. Brydges and Imbrie showed in [2] that the volume of the
configuration space of polymers in 3-space is n" ' (27)"~!. Here the volume is mea-
sured in terms of the spherical angles, that is, the surface area measure on the spheres.
Whereas the planar configuration space volume was independent of the radii of the
balls, the same is not true in 3 dimensions.

One-dimensional projections. Let X be a branched polymer in R? with ball centers
Vi, ..., v,. [t will be convenient to assume that spheres of which our polymers are
composed have diameter 1 instead of radius 1; thus the distance between any two
sphere centers is at least 1, with equality in a spanning tree.

Recall (a fact attributed to Archimedes) that if 7 is an interval on a diameter of a
sphere, then the area of the surface of the sphere that projects onto / is 27 times the
length of I. It follows that for the purpose of computing the volume of the configura-
tion space, we may assume that the polymers are parametrized by the x-coordinates of
the points vy, ... , v,, together with the angle to the positive y-axis of the projection
of v; — v; onto the yz-plane for each pair {i, j} of adjacent balls.

Let x|, ..., x, be the projections of v, ..., v, to the x-axis. We suppose, after
relabeling if necessary, that the x; are ordered x| < x» < --- < x, (we will ignore
the nongeneric cases when two of the x;’s are equal). It will also be convenient to
shift the x-coordinates so that x; = 0. If v; and v; are adjacent in the polymer then
|x; —x;] < 1. (See Figure 5.) In other words, if |x; — x;| > 1, then the spheres of
diameter 1 centered around v; and v, cannot touch, so their projections onto the yz-

Figure 5. A branched polymer projected onto the x-axis and yz-plane.
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plane are unconstrained. If |x; — x;| < 1 then the yz-projections of v; and v; cannot
be too close, else the corresponding spheres would overlap.

It follows that once x; < x» < --- < x, arc fixed, the allowable projections of the
sphere centers on the yz-plane are exactly the G-polymers on that plane, for an ap-
propriate choice of the graph G. Our plan for computing the total volume of the space
of order-n polymers in R? is to use Theorem 4 to compute the (lower-dimensional)
volume of the space of polymers with given x-axis projection, then integrate over all
possible x-axis projections. This seems more complicated than in the 2-dimensional
case, but in fact gives us additional information.

Lemma 6. The (n — 1)-dimensional volume of the set of polymers whose centers
project to x| < --- < x, is an integer multiple of (2)"~" and depends only on the
set of pairs i, j with |x; — x;| < L.

Proof. In any such polymer, the distance between the yz-plane projections of each
pair i, j of adjacent centers is determined by |x; — x;|; in fact the distance ry; satisfies
(x —x ,-)2 + rizj = |. For nonadjacent centers, this distance is at least r;; provided
|x; — x;| < I; otherwise it is unconstrained.

It follows that if we let G be the graph on vertices {1, ... ,n} in which i is ad-
jacent to j if and only if |x; — x;| < 1, then by Theorem 4 the desired volume is
w(G)2m)" !, where u(G) = |75(1, 0). n

Computing the volume. A unit interval graph (see, e.g., [12]) is defined by a set
of unit-length intervals on the real line; it has one vertex for each interval and two
intervals are adjacent in the graph just when they overlap. The graph G in the above
proof is such a graph, with the intervals centered at the x;.

The value |75 (1, 0)| is easy to compute for unit interval graphs. Order the edges lex-
icographically according to their (ordered) endpoints; that is, edge {i, j} (with/ < j)
precedes edge {i’, j'} (withi’ < j)ifi < i’ orif/ =i"and j < j'. With this ordering,
the safe spanning trecs of G are those which are inductive in the sense of the intro-
duction: all paths from the root 1 have increasing indices. It follows that each vertex
J > 1 has as its parent some i < j for which x; — x; < 1. Thus,

w(@G) =[Jru,

j=2

where y () is the number of i/ < j for whichx; — x; < I.
It follows that the volume of the 3-dimensional polymer configuration space is

Vol(BPg, ) = 2r)"! f ntpu(G)dx, - -dx,
D

:(27'()”_1/n!l—[y(j)dxgu-dxn. (1)
D j=2

Here the n! factor appears because of the relabelling of the balls, D is the domain
defined by {0 = x; < x» < --- < x,} and G is the interval graph defined from {0 =
Xy X2, ovv o Xp}

Let 7, be a uniformly random tree on the labels {1, ..., n}, with an independent
uniformly random real length u;; in [0, 1] assigned to each edge {i, j}. Choose a root
for T, uniformly at random. For each j = 1, ..., n let a; be the sum of the lengths of
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the edges in the path from the root to j in 7; and let 0 = by < b, <.-- < b, be the g;
taken in order. Let B be the (random) vector (b, ... , b,).

Theorem 7. The rotal volume of the configuration space of 3-dimensional branched
polymers of order n is n"~'(2m)"~". Moreover, if X be a random branched polymer,
and x| < xp < --- < x, the projections of its centers onto the x-axis, then, after trans-
lating so that x| = 0, the random vector (x, x2, X3, . . . , X,) is distributed exactly as B.

Proof. Given the points 0 = x; < - -+ < x,, construct a labeled tree rooted at vertex 1
by attaching each vertex j to some i < j satisfying |x; — x;| < 1; there are ]_['].:2 y(j)
ways to do this. We can think of each such tree as having edge lengths given by the
|x,- —X; | .

If we then arbitrarily reassign labels {1,2,...,n} to the vertices, we obtain
n! ]_[V;ZZ y (/) trees in all, each bearing the same relation to the x;, ..., x, that the
trees T, considered above have to by, ..., b,. We can evaluate the integral in (1) by
computing the sum over these labeled trees of the integral over the set of x5, ..., x,
which can give rise to that tree. However, the set of x», ... , x,, which can give rise to
a given labeled tree has volume exactly 1, since each edge of the tree can have any
length in [0, 1], independently of the others. Thus, each labeled tree contributes the
same amount, 1, to the integral.

By Cayley’s theorem (see, e.g.. [9, Chapter 2]), the number of rooted labeled trees
on n nodes is n"~". Thus Vol(BPy,) = (27)" 'n"~".

Since each tree contributes the same amount to the total volume, the second state-
ment follows. |

Theorem 7 says that the x-axis projections of a random X € BP,, can be obtained by
planting the root of 7, at x = 0 and stretching the tree to the right, letting the rest of its
nodes mark the projections. Figure 6 illustrates the case n = 4. The rows are indexed

+—.—.—|—‘2 1 1|0 0
4)—.—'—.—.—2 1i0‘1 0
: |

. PP ,‘o‘
¢ o | o | 0 o |
I | = 1
4; o—| o | o 1 1 0 0 0

l i |

Figure 6. The matrix of interval graphs and (unlabeled) trees for n = 4.
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by interval graph types G, presented as sample projections, each accompanied by its
relative volume ((G). The columns are indexed by trees, each weighted by the number
of ways it can arise from an interval graph.

Note that the theorem does not say that the tree structure of a random 3-dimensional
polymer is uniformly random; for example, no polymer can have a node of degree
greater than 12,

From Theorem 7 we can incidentally deduce the nonobvious fact that the “reverse”
vector (0, b, — b,_y, b, — b, »>. ..., b,) has the same distribution as B.

Theorem 8. The expected diameter (combinatorial or Euclidean) of a random 3-
dimensional polymer grows as n'/%,

Proof. Szekeres’ Theorem (see [11, 16]) says that the expected tength of the longest
path in a random tree on n labels is of order /5. The expected length of the longest
path from the root in our edge-weighted tree 7, must therefore also be of order \/n, and
this is exactly the length of the projection of our random polymer on the x-axis. Since
the space of polymers is independent of the choice of axes, the spatial diameter of a
random polymer must also be of order /n. (If the diameter were significantly larger
than the diameter of its projection to the x-axis, then almost all random rotations of
the polymer would result in a longer x-axis diameter.) ||

5. PROOF OF THE INVARIANCE LEMMA. We now return to the Invariance
Lemma, which states that the volume of the space of planar polymers of order n does
not depend on their radii. As noted above, the proof works for the more general G-
polymer case as well.

Recall that given a polymer X = X (R), with radius vector R, the graph H(X)
has a vertex at the center of each disk and an edge between vertices whenever the
corresponding disks are adjacent. When (as almost surely) H(X) is a tree, we root

H(X) at the origin, and direct each edge away from the origin. Let e, ... , e,_; be
the edges of H(X) (chosen in some order) and 6, ... , ,_, the corresponding “edge
angles.”

For a given combinatorial tree T (with labeled vertices), the set of polymers X =
X (R, T) with graph H(X) = T can thus be identified with a subset of [0, 2m)"~ !, Call
this set BPx(T) (this is shorthand notation for BPg, gy). The boundary of BP, (1)
corresponds to polymers having at least one cycle; the corresponding plane graphs
H (X)) are obtained by adding one or more edges to 7. Indeed, the boundary of BP;(T")
is piecewise smooth and the pieces of codimension & correspond to polymers with &
elementary cycles (i.e., k edges must be removed from H to make a tree).

A polymer X with cycles lies in the boundary of each BPg (7") for which 7' is a span-
ning tree of the graph H(X). Each such BP,(T) will contribute its own parametriza-
tion to X. Note, however, that some trees may be unrealizable by unit disks (e.g., the
star inside a 6-wheel); for such trees T, BP;(7") has zero volume.

We can construct a model for the parameter space of all polymers of size # and disk
radii R by taking a copy of BPg(T) for each possible combinatorial type of tree, and
identifying boundarics as above. Note that the identification maps are in gencral ana-
lytic maps on the angles: in a polygon with k vertices whose edges have fixed lengths
Fi. ..., F, any two consecutive angles are determined analytically by the remaining
k — 2 angles. This space is, however, difficult to understand on its own. Are there other
coordinates in which it has a nice geometric structure?
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Perturbations. Let P be a polygon with edges 1,2, ..., m, numbered and oriented
counterclockwise. Assuming its cdge lengths are fixed, P is determined up to transla-
tion by the edge angles ¢, ... , ¢, of its sides.

The space of perturbations of the m-gon P which preserve its edge lengths is
(m — 2)-dimensional, and is generated by “local” perturbations which move only two
consecutive vertices and thus the three edges incident to them. Here by perturbation
we mean the derivative at 0 of a smooth one-parameter path in the space of m-gons
with the same edge lengths as P. Such a perturbation is determined by the derivatives
of the angles ¢; with respect to the parameter ¢ along the path. We define 9/9¢; to be
the infinitesimal perturbation of P, preserving the edge lengths, for which 9¢,; /9, =0
unless j is one of i, { + 1,/ + 2 (indices chosen cyclically) and d¢,; /dt; = 1. See Fig-
ure 7. (If ¢;y) = ¢; .0, this perturbation is not well defined; we assume that P is in
general position so this problem does not arise.)

Figure 7. Local perturbation of edge 3 of an octagon.

The 0/0t; for i = 1,2, ... ,m — 2 generate all edge-length-preserving perturba-
tions of P. These 9/3d1; arc useful because they provide local infinitesimal coordinate
charts for the boundaries of the various sets BP;x(7T) which share the same m-cycle.
Note that the rigid rotation of P is in the space generated by the d/a¢,.

Suppose that BP(T) for some T is parametrized by angles 6,,...,6,_,, and we
are on a point of the boundary defined by an m-gon P with edge angles ¢, ..., ¢,.
Note that m — 1 of the ¢’s, modulo 7, occur among the 6, ... . &,_,. This boundary

is locally an (n — 2)-manifold M; but we will fix all angles not occurring in P, since
they do not play a role in what follows, reducing M to an (m — 2)-manifold. Nearby
points on the boundary correspond to polymers with the same cycle, but realized by
slightly perturbed m-gons with edge lengths preserved.

We also need to consider perturbations of P which change the edge lengths. Let
3/9.S be a smooth perturbation of M which changes one of the radii, say ry, infinitesi-
mally. That is, S moves each polygon on M to a nearby polygon with perturbed edge
lengths. Applying this perturbation will in particular move M off of itself.

Volumes

Conservation. Here we determine how the volume of BP,(7") changes when one of
the radii is increased. We begin by restating the Invariance Lemma:

Lemma 9. The total volume of the space of branched polymers in R?, B3(n), does not
depend on the radii R of the disks.
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Proof. We will prove the stronger fact that the local volume change under a small
change in radii is zero. That is, near a polymer on the boundary of the configuration
space, the volumes of the parts of the configuration space lost or gained under a small
change in radii sum to zero.

As above let P be an m-gon in a polymer in the boundary of BPg(T). We can
assume that P is the only cycle: otherwise we would be on a codimension-2 part
of the boundary which will not contribute to the total volume change. Let M be the
(m — 2)-manifold which is the part of the boundary of BPz(T) near P when we have
fixed the angles of all edges not in P. When we apply an infinitesimal perturbation to
the radii which increases r|, we can compute the change in the volume of BPg(T) by
integrating, along the boundary, the infinitesimal change at each point on the boundary.
We need, then, only compute the local volume element under the perturbation T% We
will show that the sum of these local volume elements is zero.

Let A be an m x m square matrix whose first row is the all-ones vector, and [or
which det A = 0. Let B be the (m — 1) x i matrix obtained from A by removing the
first row. Expanding 0 = det A along the first row, we deduce that the alternating sum
of the (m — 1) x (m — 1) minors of B is zero: letting v; be the jth column vector of
B, we have

m

Y=o Ac AT A Ay, =0, 2)
j=1

where 7; indicates that the entry v; is missing from the jth term, and v; A -+« A 0} A
-+ A v, denotes the determinant of the matrix whose columns are the v's.

In the above let ¢, ... , ¢,, be the edge angles of the sides of P, and B the matrix
whose ij-entry is d¢;/0t; for i = 1....,m — 2 and whose last row is d¢,/9S for
Jj =1,....m (see equation (3) below). Since the rigid rotation of P is in the space
generated by d¢; /91, the all-ones vector is a linear combination of the first m — 2
rows of B. In particular the matrix A obtained from adding a tow of 1’s to B has
determinant O, and so we have (2).

We can, however, interpret the jth summand in (2), when integrated over M (and
over the edges not included in P) as (up to sign, at least) the infinitesimal change in
volume of BP,(7;) under the perturbation S, where 7 runs over the trees obtained
by removing one edge of P. Once we have seen that the signs work out correctly,
then, by (2), the net infinitesimal volume change of BPx(7;), when summed over j,
I8 zero.

Because of the factor (—1)/ in (2), the signs work out correctly if and only if the
vector 3/0t; A --- A 3/01, > (by this we mean the cross product of these n — 2 vec-
tors: the vector perpendicular to these and of length equal to their determinant on the
subspace they span) considered as a normal vector to the boundary of BP(7}), rep-
resents alternately the outward and inward normal to this boundary of BP(7T;) as j
runs from 1 to m. In particular, we need to show that the orientation of this normal
vector changes (from outward to inward or vice versa) when going from j to j + 1.
To check this, take the vector d/9S; which increases (only) the radius r; of the ball
between edges j and j + 1. This vector has positive component in the outward normal
directions for both BP(T;) and BPr(74,), since increasing the radius of the jth ball
decreases the space available to 7; and T;.,. However, d¢;/dS; is zero unless i = j
or j + 1 and the nonzero components ¢, /0S; and d¢; /0S5, have opposite sign. So
the two (m — 1) x (m — 1) minors of
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obtained by removing the jth or (j + 1)st column have opposite sign. Therefore we
need to put in the sign change in (2) in order to make both represent the actual changes
in the volumes of BPx (7)) and BP(7;,,) under 3/9S; (and therefore under any per-
turbation of the radii). [ |

Explicit formulae. The relative volume changes for the different BP,(T;) as functions
of the shape of P have a surprisingly simple formula.

Proposition 10. Let P be an m-gon as above with edges e\, . . . , e,, in counterclock-
wise order. The local volume change near P of BPy(T;) due to an increase in radius
ry (of the ball centered at the vertex between edges e, and ey) is proportional to the
dot product of e; and the vector w in direction %(rpl + @), that is, perpendicular to
the angle bisector.

Note that since the vectors ¢; sum to zero, so do their dot products with w. This
gives a restatement of the invariance principle.

Proof. Let M; be the ith (m — 1) x (m — 1) minor of B, that is, M; = v; A--- A
D; A+ Avy. The vector V = (My, —M>, Ms. ..., (—1)"*'M,) is in the kernel of B
(since, upon adding a generic first row to B and inverting the resulting m X m matrix,
the first column of the result is proportional to the above vector V). Therefore V is
perpendicular to the rows of B.

Write e; = a;e'® in polar coordinates. From Y e¢; = 0 we get d (3 ¢;) =
ZJ. ajie’idg; =0, or >.;ejd¢; = 0 for any perturbation of the closed polygon
P fixing edge lengths. In particular the vector (e, ... ,e,) € C" is perpendicular
to the first m — 2 rows of B. Finally, let w be the vector ¢/ +#2/2 and denote by
{ej, w) the component of ¢; in direction w. The vector ({e;, w), (€2, w), ..., (€., w))
1s perpendicular not just to the first m — 2 rows of B but also to the last row: the
last row is zero in all but the entries 1 and 2, and the values there are explicitly
% cot((p; — ¢)/2) and % cot((¢h — ¢1)/2) respectively.'

We therefore see that V is proportional to ({e;, w}, (es, W), ..., {€,, w)) as
claimed. ||

6. BUILDING RANDOM POLYMERS IN THE PLANE. We now show how to
construct inductively a uniformly random branched polymer of order n in the plane.
We begin with a unit disk centered at the origin. Suppose we have constructed a
polymer of size n — 1, n > 1. We choose a uniformly random disk from among the
n — 1 we have so far, then choose a uniformly random boundary point on that disk and

"This can be seen by taking 9/9S of the identity (a) -+ S’ 4+ (az + 8)e'” = constant and solving for
a¢1/9S, dpr/9S.
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start growing a new disk tangent to that point. If a disk of radius 1 fits at that point,
this will define a polymer of sizc 7.

Otherwise there is a radius r with O < r < | at which a cycle P forms with the new
disk and some other disks present. At this point our polymer X is in the boundary of the
space BPz(T), where R = {I, 1, ..., 1, r}, and we need to choose some other tree 7’
for which X is in the boundary of BP; (7"}, and which has the property that increasing
r (and leaving the angles fixed) will not cause the disks to overlap. There will be at
least one possible such 7' because the volume of BP;(7") near X is decreasing as r
increases and so must be compensated by an increase in volume of some BPg (7).
We choose randomly among the BPr(7") with increasing volume, with probability
proportional to the infinitesimal change in the volumes of the BPx(7')’s as r increases.
This ensures that the volume lost to BPx(T) as r increases is distributed among the
other BP,(T") so as to maintain the uniform measure.

Figure 8 shows snapshots of the construction of a random polymer, in the process
of growing its third and fourth disks; Figure 9 shows a polymer of order 500 generated
by this method.

Figure 8. A random planar branched polymer growing new disks.

Figure 9. A uniformly random 2-dimensional branched polymer of 500 disks.
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All of the above is easily generalized to produce uniformly random G-polymers
for any connected graph G with specified cdge lengths (and in fact we nced this con-
struction below, when generating 3-dimensional polymers). The vertices of G may be
taken in any order vy, ... , v, having the property that the subgraph G, induced by
v, ..., v is connected for all k. When a uniformly random G _,-polymer has been
constructed, a new point corresponding to vertex vy is added coincident to a point
uniformly chosen from its neighborhood—in other words, we start by assuming that
the edges of G, incident to vy are infinitesimal in length. These edges are then grown
to their specified sizes, breaking cycles when they are formed in accordance with the
rules above.

7. CONSTRUCTING RANDOM POLYMERS IN 3-SPACE. To construct a uni-
tormly random 3-dimensional branched polymer of order n, we first select a uniformly
random labeled and rooted tree T from among the n"~' possibilities. This can be done
by means of a Priifer code—see, e.g., [9]—which is itself just a sequence of n — 2
numbers between 1 and n. The first entry of the code is the label of the vertex adjacent
to the least-labeled leaf of T'; that leaf is then deleted and succeeding entries defined
similarly. The reverse process is also unique and easy. After T is constructed, its root
k is chosen at random. In the constructed polymer, ball k& will be the one whose center
has least x-coordinate.

Edge-lengths are now chosen uniformly at random from [0, 1] for the edges of 7',
and x; is set to be the length of the path from vertex i to the root k of 7. The numbers
Xy, ..., x, will be the projections onto the x-axis of the ball centers, shifted so that the
center of ball k projects onto the origin.

The unit-interval graph H is defined as above on the tree vertices, namely by
connecting / to j if |x; — x;] < 1. Edge lengths are assigned to H by £(i, j) =
V1 — (x; — x;)? so that the spheres of the polymer corresponding to tree vertices i
and j are touching just when their centers lie at distance (i, j) when projected onto
the yz-plane, and in any case lie at least that far apart. From the argument in the proof
of Theorem 7 we know that given x|, ..., x,. the yz-plane projections are exactly a
uniformly random planar H-polymer, which is then constructed using the methods of
Section 6.

We now have the polymer’s yz-plane projection, as well as its (shifted) x-coordi-
nates; it remains only to translate the polymer along the x-axis so that the center of
ball 1 lies at the origin.

Figures 10 and 11 are snapshots, from two angles, of a 3-dimensional branched
polymer constructed as above.

8. OPEN PROBLEMS.

1. Is there a natural geometric structure on the space of polymers?

2. What are the volumes of BPr(T) foreach T when R = (1, I, ..., 1)? Are they
rational multiples of (27)"~"?

3. What is the expected diameter (combinatorial or geometric) of a random 2-
dimensional branched polymer?

4. More generally, what do random polymers look like in the scaling limit, in any
fixed dimension?
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Figure 11. The same polymer, slightly rotated.
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Emily Dickinson and the Binomial Theorem

I fancy you very often descending to the schoolroom with a plump Binomial
Theorem struggling in your hand which you must dissect and exhibit to your
incomprehending ones.”

—Emily Dickinson, letter to her friend Susan Gilbert, Oct. 9, 1851.

At the time, Susan was teaching mathematics at Robert Archer’s school for
girls in Baltimore, MD. She married Emily’s brother Austin in 1856. According
to Susan’s obituary, ““as a young woman [she] was so good in mathematics that
Prof. Hadley of Yale (the father of President Hadley), who for a time gave her
instruction, told her that she ought to go to Yale college.”

The quotation from Emily’s letter can be found in T. H. Johnson, ed., The Let-
ters of Emily Dickinson, Belknap Press, Cambridge, MA, 1958, p. 144. Susan
Gilbert Dickinson’s obituary is available at http://www.emilydickinson.org/
susan/obit.html.
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